Array of Multilayer Perceptrons with No-class Resampling Training for Face Recognition
نویسندگان
چکیده
منابع مشابه
Array of Multilayer Perceptrons with No-class Resampling Training for Face Recognition
A face recognition (FR) problem involves the face detection, representation and classification steps. Once a face is located in an image, it has to be represented through a feature extraction process, for later performing a proper face classification task. The most widely used approach for feature extraction is the eigenfaces method, where an eigenspace is established from the image training sa...
متن کاملFast training of multilayer perceptrons
Training a multilayer perceptron by an error backpropagation algorithm is slow and uncertain. This paper describes a new approach which is much faster and certain than error backpropagation. The proposed approach is based on combined iterative and direct solution methods. In this approach, we use an inverse transformation for linearization of nonlinear output activation functions, direct soluti...
متن کاملResampling for Face Recognition
A number of applications require robust human face recognition under varying environmental lighting conditions and different facial expressions, which considerably vary the appearance of human face. However, in many face recognition applications, only a small number of training samples for each subject are available; these samples are not able to capture all the facial appearance variations. We...
متن کاملDeep Big Multilayer Perceptrons for Digit Recognition
The competitive MNIST handwritten digit recognition benchmark has a long history of broken records since 1998. The most recent advancement by others dates back 8 years (error rate 0.4%). Good old on-line back-propagation for plain multi-layer perceptrons yields a very low 0.35% error rate on the MNIST handwritten digits benchmark with a single MLP and 0.31% with a committee of seven MLP. All we...
متن کاملCo-evolving Multilayer Perceptrons Along Training Sets
When designing artificial neural network (ANN) it is important to optimise the network architecture and the learning coefficients of the training algorithm, as well as the time the network training phase takes, since this is the more timeconsuming phase. In this paper an approach to cooperative co-evolutionary optimisation of multilayer perceptrons (MLP) is presented. The cooperative co-evoluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: INTELIGENCIA ARTIFICIAL
سال: 2010
ISSN: 1988-3064
DOI: 10.4114/ia.v13i44.1041